Materials Science and Engineering MSMSE

Major: Materials Science and Engineering
Degree Awarded: Master of Science in Materials Science and Engineering (MSMSE)
Calendar Type: Quarter
Minimum Required Credits: 45.0 
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.1801
Standard Occupational Classification (SOC) code: 17-2131

About the Program

The graduate master of science (MS) program in Materials Science and Engineering (MSE) aims to provide an education which encompasses both the breadth and depth of the most recent knowledge base in the materials science and engineering fields in a format suitable for individuals seeking careers in academia and/or industry. In addition, the program provides students with research training through research credits and/or thesis research.

The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified physical and biological science, and other engineering program graduates may also join the program. Students without an undergraduate degree in Materials Science and Engineering (MSE) are required to take MATE 503 Introduction to Materials Engineering.

The MS program in Materials Science and Engineering (MSE) is offered both on a regular full-time and on a part-time basis. 

Career Opportunities

Graduates go on to careers in engineering firms, consulting firms, law firms, private industry, business, research laboratories, academia, and national laboratories. Materials scientists and engineers find employment in such organizations as Hewlett-Packard, Boeing, Intel, 3M, Global Foundries, Chemours, Lockheed-Martin, Johnson and Johnson, Merck, AstraZeneca, Arkema, W.L. Gore, Army Research Laboratory, Los Alamos National Laboratory, Air Products, Micron, Motorola, and Corning.

Additional Information

For more information, visit the Materials Science and Engineering program and the Department of Materials Science and Engineering webpage.

Admission Requirements

Applicants must meet the graduate requirements for admission to Drexel University. The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified non-MSE engineering, physical, and biological science graduates may also join the program.

For specific information on how to apply to this program, visit Drexel University's Materials Science and Engineering Graduate Admissions webpage.

Degree Requirements 

The 45.0 quarter credits required for the MS degree include two required core courses on MATE 510 Thermodynamics of Solids and MATE 512 Introduction to Solid State Materials. Students choose four additional selected core courses.

Thesis Options

Students pursuing the thesis option are required to undertake a 9.0 credit thesis on a topic of materials research supervised by a faculty member. Alternatively, MS students can select the non-thesis option, in which case the thesis may be replaced by 9.0 credits of coursework.

All students in the thesis option are required to propose an advisor-supported research thesis topic during their first year. Students are urged to make a choice of topic as early as possible and to choose appropriate graduate courses in consultation with their advisor.

The program is organized so that part-time students may complete the degree requirements in two to four years. Full-time students may complete the program in two years.

There is no general exam required for MS students. If an MS student wishes to continue for a PhD, then the student must apply and be admitted to the PhD program. (There is no guarantee that an MS student will be admitted to the PhD program.)

Materials Science and Engineering (MSMSE) Core Courses
Required core courses:
MATE 510Thermodynamics of Solids3.0
MATE 512Introduction to Solid State Materials3.0
Four additional Selected Core (SC) courses from the following: 12.0
Structure and Properties of Polymers
Kinetics
Experimental Technique in Materials
Numerical Engineering Methods
Ceramics
Mechanical Behavior of Solids
Biomedical Materials I
Any additional related courses if approved by the graduate advisor.
Technical Electives *18.0
Thesis and Alternatives9.0
9.0 credits MATE 898 (MS thesis) or 9.0 credits of Technical Electives (TE).
Total Credits45.0
*

Of the 18.0 technical elective credits, which may include up to 6.0 credits of MATE 897, at least 9.0 credits must be taken as Materials Science and Engineering (MATE) courses, while the rest may be taken within the College of Engineering, College of Arts and Sciences, or at other colleges if consistent with the student's plan of study (and given advance written approval by their advisor). At least 9.0 of these 18.0 technical electives must be exclusive of independent study courses or research credits.

Any graduate-level course in a STEM field (Engineering, Physical Sciences, or Computing/Data), as approved by the MSE Graduate Advisor, excluding MATE 536 (Materials Seminar), MATE 503 (Introduction to Materials Engineering) and  MATE 504 (Art of Being a Scientist).

Sample Plan of Study 

First Year
FallCreditsWinterCreditsSpringCredits
MATE Selected Core Course 3.0MATE 5103.0MATE Selected Core Course 3.0
MATE Technical Elective3.0MATE 5123.0MATE Selected Core Course 3.0
MATE Technical Elective3.0MATE Technical Elective3.0Technical Elective3.0
 9 9 9
Second Year
FallCreditsWinterCredits 
MATE 898 or TECHNICAL ELECTIVE3.0MATE 898 or TECHNICAL ELECTIVE6.0 
Technical Elective3.0MATE Selected Core Course3.0 
Technical Elective3.0  
 9 9 
Total Credits 45

Facilities

Nanobiomaterials and Cell Engineering Laboratory
This laboratory contains a fume hood with vacuum/gas dual manifold, vacuum pump and rotary evaporator for general organic/polymer synthesis; gel electrophoresis and electroblotting for protein characterization; bath sonicator, glass homogenizer and mini-extruder for nanoparticle preparation; centrifuge; ultrapure water conditioning system; precision balance; pH meter and shaker.

Ceramics Processing Laboratory
This laboratory contains a photo-resist spinner, impedance analyzer, Zeta potential meter, spectrafluorometer, piezoelectric d33 meter, wire-bonder, and laser displacement meter.

Layered Solids Laboratory
This laboratory contains a vacuum hot-press; a hot isostatic press (HIP) for materials consolidation and synthesis; laser scattering particle size analyzer; creep testers, Ar-filled glove-box, high-speed saw, and assorted high temperature furnaces; metallographic preparation facilities; high temperature closed-loop servo-hydraulic testing machines.

Mechanical Testing Laboratory
This laboratory contains mechanical and closed-loop servo-hydraulic testing machines, hardness testers, Charpy and Izod impact testers, equipment for fatigue testing, metallographic preparation facilities and a rolling mill with twin 6" diameter rolls.

Macromolecular Materials Laboratory
This laboratory contains a hybrid rheometer, inert environment glove box, size exclusion chromatography with multi-angle laser light scattering, HPLC  and RI detector  & MALS, centrifuge, rotovapor, and vacuum oven used for developing innovative synthetic platforms to generate functional soft materials with complex macromolecular architectures. 

Mesoscale Materials Laboratory
This laboratory contains instrumentation for growth, characterization, device fabrication, and design and simulation of electronic, dielectric, ferroelectric and photonic materials.  Resources include physical and chemical vapor deposition and thermal and plasma processing of thin films, including oxides and metals, and semiconductor nanowire growth.  Facilities include pulsed laser deposition, atomic layer deposition, chemical vapor deposition, sublimation growth, and resistive thermal evaporation.  Variable-temperature high-vacuum probe station and optical cryostats including high magnetic field, fixed and tunable-wavelength laser sources, several monochromators for luminescence and Raman scattering spectroscopy, scanning electron microscopy with electron beam lithography, and a scanning probe microscope.

Nanomaterials Laboratory
This laboratory contains instrumentation for synthesizing, testing and manipulation of nanomaterials carbon and two dimensional carbides under microscope, high-temperature autoclaves, Sievert’s apparatus; glove-boxes; high-temperature vacuum and other furnaces for the synthesis of nano-carbon coatings and nanotubes; tube furnaces for synthesis of carbides and nitrides; potentiostat/galvanostat for electrochemical testings; ultraviolet-visible (UV-VIS) spectrophotometry; Raman spectrometers; Differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) up to 1500 °C with mass spectrometer, Zeta potential analyzer; attrition mill, bath and probe sonicators, centrifuges; electro-spinning system for producing nano-fibers.

Functional Inorganic Materials Synthesis Laboratory
This laboratory contains gas cabinets and CVD furnaces for the synthesis of inorganic and hybrid materials for energy and environmental applications, including photocatalytic mixed anion materials, oxides and nitrides.

Films and Heterostructures Laboratory
This laboratory contains an oxide molecular beam epitaxy (MBE) thin film deposition system; physical properties measurement system (PPMS) for electronic transport and magnetometry measurements from 2 – 400K, up to 9 T fields; 2 tube furnaces.

Powder Processing Laboratory
This laboratory contains vee blenders, ball-mills, sieve shaker + sieves for powder classification, several furnaces (including one with controlled atmosphere capability); and a 60-ton Baldwin cold press for powder compaction.

Soft Matter Research and Polymer Processing Laboratories
These laboratories contain computerized thermal analysis facilities including differential scanning calorimeters (DSC), dynamic mechanical analyzer (DMA) and thermo-gravimetric analyzer (TGA); tabletop tensile tester; strip biaxial tensile tester; vacuum evaporator; spin coater; centrifuge; optical microscope with hot stage; liquid crystal tester; microbalance; ultrasonic cleaner; laser holographic fabrication system; polymer injection molder and single screw extruder.

Natural Polymers and Photonics Laboratory
This laboratory contains a spectroscopic ellipsometer for film characterization; high purity liquid chromatography (HPLC) system; refractometer; electro-spinning and touch-spinning systems for producing nano-fibers.

X-ray Tomography Laboratory
This laboratory contains a high resolution X-ray micro-tomography instrument and a cluster of computers for 3D microstructure reconstruction; mechanical stage, a positioning stage and a cryostage for in-situ testing.

Materials Characterization Core (MCC)
The Department of Materials Science & Engineering relies on the Materials Characterization Core facilities within the University for materials characterization and micro- and nano-fabrication. These facilities contain a number of state-of-the-art materials characterization instruments, including high resolution and variable pressure field-emission scanning electron microscopes (SEMs) with Energy Dispersive Spectroscopy (EDS) for elemental analysis, Orientation Image Microscopy (OIM) for texture analysis, various in-situ and in-operando stages (cryo mat, heating, tensile, 3- and 4-point bending, and electrochemistry); two Transmission Electron Microscopes (TEM) with STEM capability and TEM sample preparation equipment; a dual-beam focused ion beam (FIB) system for nano-characterization and nano fabrication; a Nanoindenter; an X-ray Photoelectron Spectrometer (XPS)/Electron Spectroscopy for Chemical Analysis (ESCA) system; X-Ray Diffractometers (XRD); and an X-ray microscope (NanoCT) with an in-situ tensile/compression temperature controlled stage.

More details of these instruments, information on how to access them, and instrument usage rates can be found at Drexel University’s Materials Characterization Core webpage.

Materials Science and Engineering Faculty

Michel Barsoum, PhD (Massachusetts Institute of Technology). Distinguished Professor. Processing and characterization of novel ceramics and ternary compounds, especially the MAX and 2-D MXene phases.
Hao Cheng, PhD (Northwestern University). Associate Professor. Drug delivery, molecular self-assembly, cell-nanomaterial interactions, regenerative medicine and cell membrane engineering.
Yury Gogotsi, PhD (Kiev Polytechnic Institute) Director, A. J. Drexel Nanotechnology Institute. Distinguished University & Charles T. and Ruth M. Bach Professor. Nanomaterials; carbon nanotubes; nanodiamond; graphene; MXene; materials for energy storage, supercapacitors, and batteries.
Yong-Jie Hu, PhD (Penn State University). Assistant Professor. Computational design and evaluation of mechanical, thermodynamic, and electronic properties using first-principles calculations, molecular dynamic simulations, the CALPHAD approach, multiscale modeling, and machine learning approaches.
Richard Knight, PhD (Loughborough University) Associate Department Head and Undergraduate Advisor. Teaching Professor. Thermal plasma technology; thermal spray coatings and education; plasma chemistry and synthesis.
Christopher Y. Li, PhD (University of Akron) Graduate Advisor. Professor. Soft and hybrid materials for optical, energy, and bio applications; polymeric materials, nanocomposites, structure and properties.
Andrew Magenau, PhD (University of Southern Mississippi). Assistant Professor. Structurally complex materials exhibiting unique physical properties designed and fabricated using an assortment of methodologies involving directed self-assembly, externally applied stimuli, structure-function correlation, and applied engineering principles suited for technologies in regenerative medicine, biological interfacing, catalytic, electronic, and optical applications
Michele Marcolongo, PhD, PE (University of Pennsylvania). Professor Emerita. Orthopedic biomaterials; acellular regenerative medicine, biomimetic proteoglycans; hydrogels.
Steven May, PhD (Northwestern University) Department Head. Professor. Synthesis of complex oxide films, superlattices, and devices; magnetic, electronic, and quantum materials; x-ray and neutron scattering.
Ekaterina Pomerantseva, PhD (Moscow State University, Russia). Associate Professor. Solid state chemistry; electrochemical characterization, lithium-ion batteries, energy generation and storage; development and characterization of novel nanostructured materials, systems and architectures for batteries, supercapacitors and fuel cells.
Caroline L. Schauer, PhD (SUNY Stony Brook) Associate Dean, Faculty Affairs College of Engineering. Professor. Polysaccharide thin films and nanofibers.
Wei-Heng Shih, PhD (Ohio State University). Professor. Colloidal ceramics and sol-gel processing; piezoelectric biosensors, optoelectronics, and energy harvesting devices; nanocrystalline quantum dots for bioimaging, lighting, and solar cells.
Jonathan E. Spanier, PhD (Columbia University) Department Head, Mechanical Engineering and Mechanics. Professor. Light-matter interactions in electronic materials, including ferroelectric semiconductors, complex oxide thin film science; laser spectroscopy, including Raman scattering.
Jörn Venderbos, PhD (Leiden University). Assistant Professor. Theory of quantum materials: topological Insulators, topological semimetals, materials prediction and design, strongly correlated electron materials, complex electronic ordering phenomena, unconventional superconductors
Christopher Weyant, PhD (Northwestern University). Teaching Professor. Engineering education
Antonios Zavaliangos, PhD (Massachusetts Institute of Technology) A.W. Grosvenor Professor. Professor. Constitutive modeling; powder compaction and sintering; pharmaceutical tableting, X-ray tomography.

Emeritus Faculty

Roger D. Corneliussen, PhD (University of Chicago). Professor Emeritus. Fracture, blends and alloys, as well as compounding.
Roger D. Doherty, PhD (Oxford University). Professor Emeritus. Metallurgical processing; thermo-mechanical treatment.
Ihab L. Kamel, PhD (University of Maryland). Professor Emeritus. Nanotechnology, polymers, composites, biomedical applications, and materials-induced changes through plasma and high energy radiation.
Jack Keverian, PhD (Massachusetts Institute of Technology). Professor Emeritus. Rapid parts manufacturing, computer integrated manufacturing systems, strip production systems, technical and/or economic modeling, melting and casting systems, recycling systems.
  • Schedule of Classes
  • All Course Descriptions
  • Co-op
  • Academic Advising
  • Admissions
  • Tuition & Fees
LEARN MORE