Chemistry BA

Major: Chemistry
Degree Awarded: Bachelor of Arts (BA)
Calendar Type: Quarter
Total Credit Hours: 184.0
Co-op Options: One Co-op (Four years)
Classification of Instructional Programs (CIP) code: 40.0501
Standard Occupational Classification (SOC) code: 19-2031

About the Program

The BA in Chemistry is designed for students who want a foundational education in chemistry and the flexibility to select courses in other fields. The Bachelor of Arts in Chemistry program is less demanding mathematically compared to the Bachelor of Science, and is well suited for those interested in entering medical school and other chemistry-related fields, as well as those aspiring to careers in biotechnology, forensic chemistry, and environmental chemistry. The BA in Chemistry is also well suited for students who are interested in double majoring. BA in Chemistry graduates might opt to work as laboratory technicians in the pharmaceutical industry, as research assistants in medical school science departments, such as toxicology or biochemistry, or as technicians in biotechnology and forensic firms.

Additional Information

For more information about the major in Chemistry, contact:

Daniel King, PhD
Undergraduate Affairs Committee Chair
Department of Chemistry
Drexel University
dk68@drexel.edu

Degree Requirements (BA) 

General Education Requirements
CIVC 101Introduction to Civic Engagement1.0
COOP 101Career Management and Professional Development1.0
ENGL 101Composition and Rhetoric I: Inquiry and Exploratory Research3.0
or ENGL 111 English Composition I
ENGL 102Composition and Rhetoric II: Advanced Research and Evidence-Based Writing3.0
or ENGL 112 English Composition II
ENGL 103Composition and Rhetoric III: Themes and Genres3.0
or ENGL 113 English Composition III
UNIV S101The Drexel Experience1.0
UNIV S201Looking Forward: Academics and Careers1.0
Humanities and Arts electives *6.0
International Studies electives *6.0
Language Requirements courses *8.0-12.0
Social and Behavioral Studies electives *6.0
Studies in Diversity electives *6.0
CHEM 121Majors Chemistry I5.0
CHEM 122Majors Chemistry II5.0
CHEM 123Majors Chemistry III5.5
CHEM 230Quantitative Analysis4.0
CHEM 231 [WI] Quantitative Analysis Laboratory2.0
CHEM 246Organic Chemistry for Majors I6.5
CHEM 248Organic Chemistry for Majors II6.5
CHEM 249Organic Chemistry for Majors III7.0
CHEM 253Thermodynamics and Kinetics4.0
CHEM 270Software Skills for Chemists3.0
CHEM 357 [WI] Physical Chemistry Laboratory I2.5
CHEM 367Chemical Information Retrieval3.0
CHEM 421Inorganic Chemistry I3.0
Chemistry Electives
Select two Chemistry Electives **6.0
Biology Requirements
BIO 131
BIO 134
Cells and Biomolecules
and Cells and Biomolecules Lab
5.0
BIO 132
BIO 135
Genetics and Evolution
and Genetics and Evolution Lab
5.0
BIO 133
BIO 136
Physiology and Ecology
and Anatomy and Ecology Lab
5.0
Mathematics Requirements
MATH 121Calculus I4.0
MATH 122Calculus II4.0
MATH 123Calculus III4.0
MATH 200Multivariate Calculus4.0
Physics Requirements
PHYS 101Fundamentals of Physics I4.0
PHYS 102Fundamentals of Physics II4.0
PHYS 201Fundamentals of Physics III4.0
Free Electives ***33.0-37.0
Total Credits184.0-192.0

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid “clustering” these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List at the University Writing Program. Students scheduling their courses can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study (BA) 

4 year, 1 co-op

First Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
BIO 131
BIO 134
5.0BIO 132
BIO 135
5.0BIO 133
BIO 136
5.0VACATION
CHEM 1215.0CHEM 1225.0CHEM 1235.5 
ENGL 101 or 1113.0CIVC 1011.0ENGL 103 or 1133.0 
MATH 1214.0ENGL 102 or 1123.0MATH 1234.0 
UNIV S1011.0MATH 1224.0  
 18 18 17.5 0
Second Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
CHEM 230
CHEM 231
6.0CHEM 2486.5CHEM 2497.0COOP 101*1.0
CHEM 2466.5MATH 2004.0PHYS 1024.0PHYS 2014.0
Free elective3.0PHYS 1014.0Humanities elective3.0Free electives6.0
   International Studies elective3.0
 15.5 14.5 14 14
Third Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
CHEM 2534.0CHEM 2703.0COOP EXPERIENCECOOP EXPERIENCE
CHEM 3673.0CHEM 3572.5  
CHEM 4213.0Diversity Studies elective3.0  
UNIV S2011.0Language elective4.0  
Language elective4.0Social and Behavioral Studies elective3.0  
 15 15.5 0 0
Fourth Year
FallCreditsWinterCreditsSpringCredits 
Chemistry elective3.0Chemistry elective3.0Free electives12.0 
Diversity Studies elective3.0Free electives6.0  
Free electives6.0Humanities elective3.0  
Social and Behavioral Studies elective3.0International Studies elective3.0  
 15 15 12 
Total Credits 184

 

Co-op/Career Opportunities

Opportunities for Chemistry majors include working in research and development in corporate and government laboratories in the chemical, pharmaceutical, and agricultural (e.g., U.S. Department of Agriculture) sectors. There is a remarkably high concentration of chemical and pharmaceutical companies in the Philadelphia region. Other options include entering medical, dental, law, or other professional schools. The major in Chemistry is sufficiently flexible to allow students to prepare to teach at the secondary level. With proper selection of electives, students can meet teacher certification requirements.

Sample Co-op Opportunities

A four-year co-op degree is offered. When students complete their co-op job, they are asked to write an overview of their experience. These brief quotes are taken from some recent student reports:

Assistant chemist, pharmaceuticals manufacturer: “My position involved the synthesis and characterization of target compounds in the endotheline project. Involved the development of synthetic roots to the prescribed target. This would include the investigation of reactions which were going to be used...the position was very independent...great working environment. ”

Co-op chemist, petroleum refiner: “Performed synthesis of ligands and metal complexes. Operated FT-IR spectrometer for sample analysis. Submitted samples for analysis by mass spectrometer and NMR...The position allowed me to develop the skills necessary for independent research in organic synthesis. ”

Assistant lab technician, pharmaceuticals manufacturer: “I was an assistant technician in a mass spectrometry lab...I was responsible for the development of SDS-gel electrophoresis techniques for gels and gel membranes...I developed the methods independently and my employer encouraged me to be an expert on the technique and explore any method I found that would benefit the lab. ”

Visit the Drexel Steinbright Career Development Center page for more detailed information on co-op and post-graduate opportunities.

Facilities

There are nine undergraduate teaching laboratories in the department: three Freshman Chemistry labs, three Organic Chemistry labs, a Physical Chemistry lab, an Analytical Instrumentation Laboratory, and a combined Analytical/Inorganic Chemistry lab.

Mass Spectrometry Laboratory
The department maintains a professionally staffed mass spectrometry facility available to all members of the university community. Currently available instrumentation consists of a Waters Autospec M high resolution magnetic-sector mass spectrometer, a Bruker Autoflex III MALDI Time-of-Flight Mass Spectrometer, a Thermo LTQ-FT Fourier Transform Mass Spectrometer, a Sciex API-3000 triple-quadrupole mass spectrometer, and a Varian Saturn 2000 Gas Chromatograph/Ion-trap mass spectrometer system.

Nuclear Magnetic Resonance Laboratory
The professionally staffed Chemistry department NMR facility is equipped with 300MHz and 500MHz Varian Unity INNOVA NMR systems; both instruments have multi-nuclear capability. The probe on the 500MHz instrument is a cryogenically cooled triple resonance model (1H {13C/15N}) suitable for protein analysis. A Varian X-band 12" EPR spectrometer is also available.

Analytical Instrumentation Laboratory
The open-access departmental Analytical Instrumentation Laboratory includes two Perkin-Elmer (PE) Spectrum One Fourier-transform infrared absorption spectrometers each with a universal diamond ATR accessory, a PE Lambda-35 UV/visible spectrometer, a PE Lambda-950 UV/visible/NIR spectrometer with a 60-mm-diameter diffuse reflectance integrating sphere, a PE model 343 polarimeter, a PE LS55B luminescence spectrometer, a PE Clarus 500 capillary-column GC with dual FID detectors, a Clarus 500 capillary-column GC/MS system (with electron impact capability), a PE Series 200 Quaternary HPLC development system with UV/visible photodiode array detector, a PE Series 200 binary HPLC system interfaced to a Sciex 2000 triple-quadrupole mass spectrometer, a PE Series 2000 binary Gel Permeation Chromatography system with refractive index detector, and a Varian AA240FS flame atomic absorption spectrometer equipped with a GTA 120 Graphite Furnace Accessory.

Organic Instrumentation Laboratory
The Organic Instrumentation Laboratory (co-located with the organic synthesis teaching laboratories in the Papdakis Integrated Sciences Building) is equipped with two Perkin-Elmer (PE) Spectrum Two Fourier-transform infrared absorption spectrometers each with a universal diamond ATR accessory, a PE Clarus 500 capillary-column GC with one FID and one TCD detector, and an Anasazi EFT-90 FT-NMR system.

Other Departmental Facilities
The department has a VEECO INNOVA N3 Multimode Scanning Probe Microscope and also maintains a computational chemistry laboratory equipped with nine Dell Optiplex 790 computers running Hyperchem v 8.0. Research laboratories for each of the department faculty members are located in Disque and Stratton Halls. Instrumentation available in the research laboratories is described on individual faculty web pages. Full-time professional support includes two electronic instrument specialists (for NMR and MS- Chemistry department), two electronics specialists (College of Arts & Sciences Electronics Shop), and four machinists (Drexel University Machine Shop).

Chemistry Faculty

Reza Farasat, PhD (University of Alabama). Assistant Teaching Professor. Modification of polymers for diverse applications; utilizing Thermoanalysis techniques to study polymeric and non-polymeric materials; nanotechnology; applying Multi-detector Size Exclusion Chromatography for characterization of polymers; creating composites to improve materials' properties.
Fraser Fleming, PhD (University of British Columbia (Canada)). Professor. Nitriles, Isonitriles, Stereochemistry, Organometallics
Joe P. Foley, PhD (University of Florida) Department Head. Professor. Separation science, especially the fundamentals and biomedical/pharmaceutical applications of the following voltage- or pressure-driven separation techniques: capillary electrophoresis (CE), electrokinetic chromatography, supercritical fluid chromatography, and high-performance and two-dimensional liquid chromatography (LC). Within these techniques, we explore novel separation modes (e.g., dual-opposite-injection CE and sequential elution LC), novel surfactant aggregate pseudophases, and chiral separations.
Lee Hoffman, PhD (Flinders University, Adelaide, South Australia). Assistant Teaching Professor. Interfacial studies on the self-assembly of natural organic materials, understanding the nature of each component, and development of a mechanism describing this process;Dendrimer/metal nanocomposite design and synthesis hosting metal nanoparticles, utilizing the multivalent dendritic polymer architecture for further exploitation with other molecules such as antibodies and other targeting species.
Monica Ilies, PhD (Polytechnic University of Bucharest). Associate Teaching Professor. Bioorganic chemistry and chemical biology; bioinorganic chemistry and biochemistry.
Haifeng Frank Ji, PhD (Chinese Academy of Sciences). Professor. Micromechancial sensors for biological and environmental applications; Nanomechanical drug screening technology.
Daniel B. King, PhD (University of Miami). Associate Professor. Assessment of active learning methods and technology in chemistry courses; incorporation of environmental data into chemistry classroom modules; development of hands-on activities and laboratory experiments.
Jamie Ludwig, PhD (UT Southwestern Medical Center). Discovery and optimization of biocatalytic transformations for use inorganic synthesis.
Dionicio Martinez-Solario, PhD (University of Alabama). Assistant Professor. Total synthesis of complex biologically active natural products serving as inspirational platforms for the discovery and development of new reactions and synthetic methods.
Craig McClure, PhD (University of Michigan). Associate Teaching Professor. Promotion of quantitative literacy in introductory courses; development of guided inquiry activities for introductory chemistry; outreach programs in STEM fields.
Kevin G. Owens, PhD (Indiana University). Associate Professor. Mass spectrometry research, including the development of sample preparation techniques for quantitative analysis and mass spectrometric imaging using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOFMS) techniques for both biological and synthetic polymer systems, the development of laser spectroscopic techniques for combustion analysis, and the development of correlation analysis and other chemometric techniques for automating the analysis of mass spectral information.
Susan A. Rutkowsky, PhD (Drexel University) Associate Department Head. Associate Teaching Professor. Development of labs and lecture demonstrations for general and organic chemistry courses; STEM outreach programs.
Jeremiah Scepaniak, PhD (New Mexico State University). Assistant Professor. Design transition metal-based contrast agents for MRI & synthesis of bimetallic complexes to activate small molecules.
Reinhard Schweitzer-Stenner, PhD (Universität Bremen (Germany)). Professor. Exploring conformational ensembles of unfolded or partially folded peptides and proteins; determining the parameters governing peptide self-aggregation; structure and function of heme proteins; investigating protein-membrane interactions; use of IR, VCD, Raman, NMR and absorption spectroscopy for structure analysis.
Karl Sohlberg, PhD (University of Delaware). Associate Professor. Computational and theoretical materials-related chemistry: (1) complex catalytic materials; (2) mechanical and electrical molecular devices.
Anthony Wambsgans, PhD (Rice University). Associate Teaching Professor.
Ezra Wood, PhD (University of California-Berkeley). Associate Professor. Radical chemistry and formation of secondary pollutants in urban and forest environments, impacts of biomass burning on air pollution and climate change, pollutant emissions, and design and deployment of novel instrumentation for field studies.
Jun Xi, PhD (Cornell University). Associate Teaching Professor. Biomacromolecular interactions both in solution and in confined environment; mechanisms of DNA replication and DNA repair; structure and function of molecular chaperones; drug target identification and new therapeutic development; single molecule enzymology; DNA directed organic synthesis.

Emeritus Faculty

Anthony W. Addison, PhD (University of Kent at Canterbury, England). Professor Emeritus. Design and synthesis of novel biomimetic and oligonuclear chelates of copper, nickel, iron, ruthenium and vanadium; their interpretation by magnetochemical, electrochemical and spectroscopic methods, including electron spin resonance; CD and ESR spectroscopy and kinetics for elucidation of molecular architecture of derivatives (including NO) of oxygen-binding and electron-transfer heme- and non-heme iron metalloproteins of vertebrate and invertebrate origins; energy-transfer by Ru, Ir and lanthanide-containing molecules and assemblies.
Amar Nath, PhD (Moscow State University, Moscow USSR). Professor Emeritus.
Peter A. Wade, PhD (Purdue University). Professor Emeritus. Exploration of a newly discovered [3,3]-sigmatropic rearrangement in which O-allyl nitronic esters are thermally converted to γ,δ-unsaturated nitro compounds; development and exploitation of a carbon-based hemiacetal mimic; and exploration of cycloaddition reactions involving nitroethylene derivatives and novel nitrile oxides.
  • Schedule of Classes
  • All Course Descriptions
  • Co-op
  • Academic Advising
  • Admissions
  • Tuition & Fees
LEARN MORE