Materials Science and Engineering MSMSE
Major: Materials Science and Engineering
Degree Awarded: Master of Science in Materials Science and Engineering (MSMSE)
Calendar Type: Quarter
Minimum Required Credits: 45.0
Co-op Option: Available for full-time, on-campus master's-level students
Classification of Instructional Programs (CIP) code: 14.1801
Standard Occupational Classification (SOC) code: 17-2131
About the Program
The graduate master of science (MS) program in Materials Science and Engineering (MSE) aims to provide an education which encompasses both the breadth and depth of the most recent knowledge base in the materials science and engineering field in a format suitable for individuals seeking careers in academia and/or industry. In addition, the program provides students with research training through research credits and/or thesis research.
The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified physical and biological sciences and other engineering program graduates may also join the program. Students without an undergraduate degree in Materials Science and Engineering (MSE) are required to take MATE 503 Introduction to Materials Engineering.
The MS program in Materials Science and Engineering (MSE) is offered both on a regular full-time and on a part-time basis.
Career Opportunities
Graduates go on to careers in engineering firms, consulting firms, law firms, private industry, business, research laboratories, academia, and national laboratories. Materials scientists and engineers find employment in such organizations as Hewlett-Packard, Boeing, Intel, 3M, Global Foundries, Chemours, Lockheed-Martin, Johnson and Johnson, Merck, AstraZeneca, Arkema, W.L. Gore, Army Research Laboratory, Los Alamos National Laboratory, Air Products, Micron, Motorola and Corning.
Additional Information
For more information, visit the Materials Science and Engineering program and the Department of Materials Science and Engineering webpage.
Admission Requirements
Applicants must meet the graduate requirements for admission to Drexel University. The graduate student body reflects a broad spectrum of undergraduate backgrounds. Because of the expansion into interdisciplinary areas, qualified non-MSE engineering, physical, and biological science graduates may also join the program.
For specific information on how to apply to this program, visit Drexel University's Materials Science and Engineering Graduate Admissions webpage.
Degree Requirements
The 45.0 quarter credits required for the MS degree include two required core courses on MATE 510 Thermodynamics of Solids and MATE 512 Introduction to Solid State Materials. Students choose four additional selected core courses.
Thesis Options
Students pursuing the thesis option are required to undertake a 9.0 credit thesis on a topic of materials research supervised by a faculty member. Alternatively, MS students can select the non-thesis option, in which case the thesis may be replaced by 9.0 credits of coursework.
All students pursuing the thesis option are required to propose an advisor-supported research thesis topic during their first year. Students are urged to make a choice of topic as early as possible and to choose appropriate graduate courses in consultation with their advisor.
The program is organized so that part-time students may complete the degree requirements in two to four years. Full-time students may complete the program in two years.
There is no general exam required for MS students. If an MS student wishes to continue for a PhD, then the student must apply and be admitted to the PhD program. (There is no guarantee that an MS student will be admitted to the PhD program.)
Materials Science and Engineering (MSMSE) Core Courses | ||
Required core courses: | ||
MATE 510 | Thermodynamics of Solids | 3.0 |
MATE 512 | Introduction to Solid State Materials | 3.0 |
Four additional Selected Core (SC) courses from the following: | 12.0 | |
Structure and Properties of Polymers | ||
Kinetics | ||
Experimental Technique in Materials | ||
Numerical Engineering Methods | ||
Ceramics | ||
Mechanical Behavior of Solids | ||
Biomedical Materials I | ||
Any additional related courses if approved by the graduate advisor. | ||
Technical Electives * | 18.0 | |
Thesis and Alternatives | 9.0 | |
9.0 credits MATE 898 (MS thesis) or 9.0 credits of Technical Electives (TE). | ||
Optional Coop Experience ** | 0-1 | |
Career Management and Professional Development for Master's Degree Students | ||
Total Credits | 45.0-46.0 |
- *
Of the 18.0 technical elective credits, which may include up to 9.0 credits of MATE 897, at least 9.0 credits must be taken as Materials Science and Engineering (MATE) courses, while the rest may be taken within the College of Engineering, College of Arts and Sciences, or at other colleges if consistent with the student's plan of study (and given advance written approval by their advisor). At least 9.0 of these 18.0 technical electives must be exclusive of independent study courses or research credits.
Any graduate-level course in a STEM field (Engineering, Physical Sciences, or Computing/Data), as approved by the MSE Graduate Advisor, excluding MATE 536 (Materials Seminar), MATE 503 (Introduction to Materials Engineering) and MATE 504 (Art of Being a Scientist).
- **
Co-op is an option for this degree for full-time on-campus students. To prepare for the 6-month co-op experience, students will complete: COOP 500. The total credits required for this degree with the co-op experience is 46.
Students not participating in the co-op experience will need 45.0 credits to graduate.
Sample Plan of Study
MS-MSE Thesis Option
First Year | |||||
---|---|---|---|---|---|
Fall | Credits | Winter | Credits | Spring | Credits |
MATE Selected Core Course | 3.0 | MATE 510 | 3.0 | MATE Selected Core Courses | 6.0 |
MATE Technical Electives | 6.0 | MATE 512 | 3.0 | Technical Elective | 3.0 |
MATE Technical Elective | 3.0 | ||||
9 | 9 | 9 | |||
Second Year | |||||
Fall | Credits | Winter | Credits | ||
MATE 898 (or Technical Elective) | 3.0 | MATE 898 (or Technical Elective) | 6.0 | ||
Technical Electives | 6.0 | MATE Selected Core Course | 3.0 | ||
9 | 9 | ||||
Total Credits 45 |
MS-MSE CO-OP Option
First Year | |||||||
---|---|---|---|---|---|---|---|
Fall | Credits | Winter | Credits | Spring | Credits | Summer | Credits |
COOP 500 | 1.0 | MATE 510 | 3.0 | MATE Selected Core Courses | 6.0 | Technical Elective | 3.0 |
MATE Selected Core Course | 3.0 | MATE 512 | 3.0 | Technical Elective | 3.0 | Technical Elective | 3.0 |
MATE Technical Electives | 6.0 | MATE Technical Elective | 3.0 | Technical Elective | 3.0 | ||
10 | 9 | 9 | 9 | ||||
Second Year | |||||||
Fall | Credits | Winter | Credits | Spring | Credits | ||
COOP EXPERIENCE | 0.0 | COOP EXPERIENCE | 0.0 | MATE Selected Core Course | 3.0 | ||
Technical Electives | 6.0 | ||||||
0 | 0 | 9 | |||||
Total Credits 46 |
Facilities
Nanobiomaterials and Cell Engineering Laboratory
This laboratory contains a fume hood with vacuum/gas dual manifold, vacuum pump and rotary evaporator for general organic/polymer synthesis; gel electrophoresis and electroblotting for protein characterization; bath sonicator, glass homogenizer and mini-extruder for nanoparticle preparation; centrifuge; ultrapure water conditioning system; precision balance; pH meter and shaker.
Ceramics Processing Laboratory
This laboratory contains a photo-resist spinner, impedance analyzer, Zeta potential meter, spectrafluorometer, piezoelectric d33 meter, wire-bonder, and laser displacement meter.
Layered Solids Laboratory
This laboratory contains a vacuum hot-press; creep testers, Ar-atmosphere glove-box, high-speed saw, and assorted high temperature furnaces; metallographic preparation facilities; high temperature closed-loop servo-hydraulic testing machines.
Mechanical Testing Laboratory
This laboratory contains mechanical and closed-loop servo-hydraulic testing machines, hardness testers, Charpy and Izod impact testers, equipment for fatigue testing, metallographic preparation facilities and a rolling mill with twin 6" diameter rolls.
Macromolecular Materials Laboratory
This laboratory contains a hybrid rheometer, inert environment glove box, size exclusion chromatography with multi-angle laser light scattering, HPLC and RI detector & MALS, centrifuge, rotovapor, and vacuum oven used for developing innovative synthetic platforms to generate functional soft materials with complex macromolecular architectures.
Mesoscale Materials Laboratory
This laboratory contains instrumentation for growth, characterization, device fabrication, and design and simulation of electronic, dielectric, ferroelectric and photonic materials. Resources include physical and chemical vapor deposition and thermal and plasma processing of thin films, including oxides and metals, and semiconductor nanowire growth. Facilities include pulsed laser deposition, atomic layer deposition (ALD), chemical vapor deposition (CVD), sublimation growth, and resistive thermal evaporation. Variable-temperature high-vacuum probe station and optical cryostats including high magnetic field, fixed and tunable-wavelength laser sources, several monochromators for luminescence and Raman scattering spectroscopy, scanning electron microscopy with electron beam lithography, and a scanning probe microscope.
Nanomaterials Laboratory
This laboratory contains instrumentation for synthesizing, testing and manipulation of nanomaterials carbon and two dimensional carbides under microscope, high-temperature autoclaves, Sievert’s apparatus; glove-boxes; high-temperature vacuum and other furnaces for the synthesis of nano-carbon coatings and nanotubes; tube furnaces for synthesis of carbides and nitrides; potentiostat/galvanostat for electrochemical testings; ultraviolet-visible (UV-VIS) spectrophotometry; Raman spectrometers; Differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA) up to 1500 °C with mass spectrometer, Zeta potential analyzer; attrition mill, bath and probe sonicators, centrifuges; electro-spinning system for producing nano-fibers.
Functional Inorganic Materials Synthesis Laboratory
The laboratory contains equipment for the synthesis of inorganic and hybrid materials, including gas cabinets for NH3 and H2, a CVD furnace, and spin-coater; UV-Vis spectrophotometer; and a photodegradation test station with Xe 1000 W lamp.
Films and Heterostructures Laboratory
This laboratory contains an oxide molecular beam epitaxy (MBE) thin film deposition system; physical properties measurement system (PPMS) for electronic transport and magnetometry measurements from 2 to 400 K, up to 9 T fields; 2 tube furnaces; spectroscopic ellipsometer.
Powder Processing Laboratory
This laboratory contains vee blenders, ball-mills, sieve shaker + sieves for powder classification, several furnaces.
Soft Matter Research and Polymer Processing Laboratories
These laboratories contain computerized thermal analysis facilities including differential scanning calorimeters (DSC), dynamic mechanical analyzer (DMA) and thermo-gravimetric analyzer (TGA); tabletop tensile tester; strip biaxial tensile tester; vacuum evaporator; spin coater; centrifuge; optical microscope with hot stage; liquid crystal tester; microbalance; ultrasonic cleaner; laser holographic fabrication system; polymer injection molder and single screw extruder.
Natural Polymers and Photonics Laboratory
This laboratory contains a high purity liquid chromatography (HPLC) system; refractometer; electro-spinning and touch-spinning systems for producing nanofibers.
X-ray Tomography Laboratory
This laboratory contains a high resolution X-ray micro-tomography instrument and a cluster of computers for 3D microstructure reconstruction; mechanical stage, a positioning stage and a cryostage for in-situ testing.
MSE Undergraduate Teaching Laboratory
Contains an FTIR spectrometer, metallographic sample preparation, equipment, polymer 3D printers, polymer extruder and injection molder, Vickers hardness tester, inverted metallograph, multiple furnaces.
Materials Characterization Core (MCC)
The Department of Materials Science & Engineering relies on the Materials Characterization Core facilities within the University for materials characterization and micro- and nano-fabrication. These facilities contain a number of state-of-the-art materials characterization instruments, including high resolution and variable pressure field-emission scanning electron microscopes (SEMs) with Energy Dispersive Spectroscopy (EDS) for elemental analysis, Orientation Image Microscopy (OIM) for texture analysis, various in-situ and in-operando stages (cryo mat, heating, tensile, 3- and 4-point bending, and electrochemistry); two Transmission Electron Microscopes (TEMs) with STEM capability and TEM sample preparation equipment; a dual-beam focused ion beam (FIB) system for nano-characterization and nano fabrication; a Nanoindenter; an X-ray Photoelectron Spectrometer (XPS)/Electron Spectroscopy for Chemical Analysis (ESCA) system; X-Ray Diffractometers (XRD); and an X-ray microscope (NanoCT) with an in-situ tensile/compression temperature controlled stage.
More details of these instruments, information on how to access them, and instrument usage rates can be found at Drexel University’s Materials Characterization Core webpage.
Program Level Outcomes
- Materials Science and Engineering program graduates possess the core technical competencies in their field necessary to successfully interface with other engineering disciplines in the workplace.
- Materials Science and Engineering program graduates are leaders in their chosen fields.
- Materials Science and Engineering program graduates are engaged in lifelong learning.
- Materials Science and Engineering program graduates possess written and verbal communication skills appropriate for professional materials engineers and/or scientists.