Biomedical Engineering BS / Biomedical Engineering MS

Major: Biomedical Engineering
Degree Awarded: Bachelor of Science in Biomedical Engineering (BSBE) and Master of Science in Biomedical Engineering (MSBE)
Calendar Type: Quarter
Total Credit Hours: 228.5
Co-op Options: Three Co-ops (Five years)
Classification of Instructional Programs (CIP) code: 14.0501
Standard Occupational Classification (SOC) code: 17-2031

About the Program

The Biomedical Engineering BS/MS dual degree is an accelerated program providing the academically qualified student an opportunity to simultaneously earn both BS and MS degrees (two diplomas are awarded) in the biomedical engineering program areas of his/her/their choice in five years, the time normally required to finish a bachelor's degree alone.

The program combines the practical work experience of Drexel undergraduate cooperative education with the graduate credentials of an advanced degree. With both an undergraduate and graduate degree and practical work experience, BS/MS graduates enter the work force with specialized knowledge and training.

Admission Requirements

In addition to meeting the University requirements, students applying into the Biomedical BS/MS program must:

  • Be an undergraduate in Biomedical Engineering in the 5 year, 3 co-op plan of study
  • Have an approved plan to study that includes master's degree in Biomedical Engineering
  • Have a minimum cumulative GPA of at least 3.4

For those interested in pursuing a MS thesis, there is an additional requirement:

  • Students must submit a research petition no later than April 1 of junior year*

*If the petition is not submitted or accepted, the student will not be able to pursue a thesis option

Degree Requirements

Core Courses
BIO 122Cells and Genetics4.5
BIO 201Human Physiology I4.0
BIO 218Principles of Molecular Biology4.0
BMES 101Introduction to BMES Design I: Defining Medical Problems2.0
BMES 102Introduction to BMES Design II: Evaluating Design Solutions2.0
BMES 124Biomedical Engineering Freshman Seminar I2.0
BMES 201Programming and Modeling for Biomedical Engineers I3.0
BMES 202Programming and Modeling for Biomedical Engineers ll3.0
BMES 241Modeling in Biomedical Design I2.0
BMES 302Laboratory II: Biomeasurements2.0
BMES 303Laboratory III: Biomedical Electronics2.0
BMES 310Biomedical Statistics4.0
BMES 315Experimental Design in Biomedical Research4.0
BMES 337Introduction to Physiological Control Systems3.0
BMES 338Biomedical Ethics and Law3.0
BMES 341Modeling in Biomedical Design II2.0
BMES 345Mechanics of Biological Systems3.0
BMES 375Computational Bioengineering4.0
BMES 381Junior Design Seminar I2.0
BMES 382Junior Design Seminar II2.0
BMES 432Biomedical Systems and Signals3.0
BMES 444Biofluid Mechanics3.0
BMES 451Transport Phenomena in Living Systems4.0
BMES 491 [WI] Senior Design Project I3.0
BMES 492Senior Design Project II2.0
BMES 493Senior Design Project III3.0
CHEM 101General Chemistry I3.5
CHEM 102General Chemistry II4.5
CHEM 253Thermodynamics and Kinetics4.0
or ENGR 210 Introduction to Thermodynamics
CIVC 101Introduction to Civic Engagement1.0
COOP 101Career Management and Professional Development1.0
ECE 201Foundations of Electric Circuits I4.0
ENGL 101Composition and Rhetoric I: Inquiry and Exploratory Research3.0
ENGL 102Composition and Rhetoric II: Advanced Research and Evidence-Based Writing3.0
ENGL 103Composition and Rhetoric III: Themes and Genres3.0
ENGR 220Fundamentals of Materials4.0
MATH 121Calculus I4.0
MATH 122Calculus II4.0
MATH 200Multivariate Calculus4.0
MATH 201Linear Algebra4.0
MATH 210Differential Equations4.0
MEM 202Statics3.0
MEM 238Dynamics4.0
PHYS 101Fundamentals of Physics I4.0
PHYS 102Fundamentals of Physics II4.0
UNIV R101The Drexel Experience1.0
Bioscience Elective: Choose any BIO course (200-level or higher)3.0
Bioscience Restricted Elective (Choose 1)3.0
Human Physiology II
Principles of Cell Biology
Form, Function & Evolution of Vertebrates
General Studies Electives (Choose 5) *15.0
Laboratory Electives (Choose 2)4.0
Human Physiology Laboratory
Techniques in Cell Biology
Techniques in Molecular Biology
Biochemistry Laboratory
Laboratory I: Experimental Biomechanics
Laboratory IV: Ultrasound Images
Laboratory V: Musculoskeletal Anatomy for Biomedical Engineers
Brain Computer Interface Laboratory
Laboratory V: Musculoskeletal Anatomy for Biomedical Engineers
Concentration Requirements and STEM Electives (22 credits total; 6 of which are satisfied by GR SEM electives)16.0
Concentration Required Courses (3 Courses)
STEM Electives (9 - 12 credits depending on concentration) (Graduate SEM electives satifies 6 credits of UG STEM electives) **
Graduate Core Courses
BMES 501Medical Sciences I3.0
BMES 502Medical Sciences II3.0
BMES 510Biomedical Statistics4.0
BMES 538Biomedical Ethics and Law3.0
BMES 550Advanced Biocomputational Languages4.0
or BMES 546 Biocomputational Languages
Modeling Intensive Courses (choose 2)6.0
Biological Control Systems
Transport Phenomena in Living Systems I
Biosimulation I
Biosimulation II
Mathematical Modeling of Cellular Behavior
Biocomputational Modeling and Simulation
Neural Signals
BMES Electives (Can include up to 9.0 credit of Thesis)16.0
Medical Sciences III
Cardiovascular Engineering
Entrepreneurship for Biomedical Engineering and Science
Experimental Design in Biomedical Research
Intermediate Biostatistics
Interpretation of Biomedical Data
Introduction to Biosensors
Pediatric Engineering I
Pediatric Engineering II
Chronobioengineering I
Chronobioengineering II
Design Thinking for Biomedical Engineers
Introduction to Product Design for Biomedical Engineers
Nano and Molecular Mechanics of Biological Materials
Quantitative Systems Biology
Genome Information Engineering
Structural Bioinformatics and Drug Design
Genomic and Sequencing Technologies
Biomedical Signal Processing
Medical Device Development
Biological Control Systems
Medical Imaging Systems I
Medical Imaging Systems II
Medical Imaging Systems III
Tissue Engineering I
Tissue Engineering II
Transport Phenomena in Living Systems I
Biomaterials I
Biomaterials II
Biosimulation I
Biosimulation II
Biomaterials and Tissue Engineering III
Mathematical Modeling of Cellular Behavior
Biocomputational Modeling and Simulation
Experimental Methods in Neuroengineering
Neural Signals
Principles in Neuroengineering
Neural Aspects of Posture and Locomotion I
Neural Networks
Medical Instrumentation
Medical Instrumentation II
Hospital Administration
Science, Engineering, and Medicine Electives (Satisfies both UG and GR degree requirements) ***6.0
Thesis Option
Master's Thesis
Total Credits228.5

Concentration Requirements

Students must select one concentration and complete the listed required courses. The student also needs to take additional STEM electives, as described above. The credit total of the concentration required courses and the STEM electives must be at least 22.0 credits.

Biomaterials Required Courses
BMES 460Biomaterials I (term 10)4.0
BMES 461Biomaterials II (term 11)4.0
CHEM 241Organic Chemistry I4.0
Total Credits12.0
Biomechanics Required Courses
BMES 441Biomechanics I: Introduction to Biomechanics (term 10)4.0
BMES 442Biomechanics II: Musculoskeletal Modeling and Human Performance (term 11)4.0
MEM 201Foundations of Computer Aided Design3.0
Total Credits11.0
Biomedical Imaging Required Courses
BMES 421Biomedical Imaging Systems I: Images (term 10)4.0
BMES 422Biomedical Imaging Systems II: Ultrasound (term 11)4.0
PHYS 201Fundamentals of Physics III4.0
Total Credits12.0
Biomedical Informatics Required Courses
BIO 219 [WI] Techniques in Molecular Biology3.0
BMES 483Quantitative Systems Biology (term 11)4.0
BMES 484Genome Information Engineering (term 12)4.0
Total Credits11.0
Neuroengineering Required Courses
BIO 462Biology of Neuron Function3.0
BMES 477Neuroengineering I: Neural Signals (term 11)3.0
BMES 478Neuroengineering II: Principles of Neuroengineering (term 12)3.0
Total Credits9.0
Tissue Engineering Required Courses
BIO 219 [WI] Techniques in Molecular Biology3.0
BMES 471Cellular and Molecular Foundations of Tissue Engineering (term 10)4.0
BMES 472Developmental and Evolutionary Foundations of Tissue Engineering (term 11)4.0
Total Credits11.0

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid “clustering” these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List at the University Writing Program. Students scheduling their courses can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study

First Year
BMES 1012.0BMES 1022.0BIO 1224.5VACATION
BMES 1242.0CHEM 1024.5BMES 2013.0 
CHEM 1013.5ENGL 102 or 1123.0COOP 1011.0 
CIVC 1011.0MATH 1224.0ENGL 103 or 1133.0 
ENGL 101 or 1113.0PHYS 1014.0MATH 2004.0 
MATH 1214.0 PHYS 1024.0 
UNIV R1011.0   
 16.5 17.5 19.5 0
Second Year
ECE 2014.0MEM 2384.0  
ENGR 2204.0BMES 2412.0  
MATH 2014.0BMES 3383.0  
MEM 2023.0MATH 2104.0  
 (UG) Bioscience Restricted Elective3.0  
 18 20 0 0
Third Year
BMES 3453.0BMES 3104.0  
BMES 3754.0BMES 3412.0  
BMES 4323.0BMES 4514.0  
CHEM 253 or ENGR 2204.0(UG) Bioscience Elective 200+ level or higher3.0  
(UG) Laboratory Elective2.0(UG) Laboratory Elective2.0  
 BMES 5383.0  
 20 20 0 0
Fourth Year
BMES 3812.0BMES 3373.0  
(UG) General Studies Electives6.0BMES 3822.0  
BMES 5504.0BMES 4443.0  
BMES 5104.0(UG) Concentration Requirement3.0  
 (GR) Modeling Intensive Elective3.0  
 (GR) BMES Elective4.0  
 20 20 0 0
Fifth Year
BMES 4913.0BMES 4922.0BMES 4933.0 
(UG) Concentration Requirement3.0(UG) Concentration Requirement3.0(UG) Gen Studies Elective3.0 
(UG) Gen Studies Elective3.0(UG) Gen Studies Elective3.0(GR) SEM Elective / (UG) STEM Elective*3.0 
(UG) STEM Elective3.0(UG) STEM Elective4.0(GR) SEM Elective / (UG) STEM Elective*3.0 
BMES 5013.0BMES 5023.0(GR) Modeling Intensive Elective3.0 
(GR) BMES Elective4.0(GR) BMES Elective4.0(GR) BMES Elective4.0 
 19 19 19 
Total Credits 228.5

Biomedical Engineering, Science and Health Systems Faculty

Fred D. Allen, PhD (University of Pennsylvania) Associate Director, Undergraduate Education. Assistant Professor. Tissue engineering, cell engineering, orthopedics, bone remodeling, wound healing, mechanotransduction, signal transduction, adhesion, migration.
Hasan Ayaz, PhD (Drexel University) School of Biomedical Engineering, Science and Health Systems. Research Associate Professor. Optical brain imaging, cognitive neuroengineering, brain computer interface (BCI), functional ner infrared (fNIR), and near infrared spectroscopy (NIRS).
Sriram Balasubramanian, PhD (Wayne State University). Assistant Professor. Structural characteristics of the pediatric thoracic cage using CT scans and developing an age-equivalent animal model for pediatric long bones.
Kenneth A. Barbee, PhD (University of Pennsylvania). Professor. Cellular biomechanics of neural and vascular injury, mechanotransduction in the cardiovascular system, mechanical control of growth and development for wound healing and tissue engineering.
Donald Buerk, PhD (Northwestern University). Research Professor. Biotechnology, physiology, systems biology, blood flow, microcirculation, nitric oxide, oxygen transport
Jamie Dougherty, PhD (Drexel University). Assistant Teaching Professor. Brain-computer interface, neural encoding, electrophysiological signal acquisition and processing.
Lin Han, PhD (Massachusetts Institute of Technology). Assistant Professor. Nanoscale structure-property relationships of biological materials, genetic and molecular origins soft joint tissue diseases, biomaterials under extreme conditions, coupling between stimulus-responsiveness and geometry.
Uri Hershberg, PhD (Hebrew University of Jerusalem, Israel). Assistant Professor. Bioinformatics, immunology, neural computation, system biology, somatic selection, autoimmunity, genetic stability, germline diversity, dendritic cell, transcription elements, pathogens, computational and mathematical modeling, complex systems, cognition and inflammation.
Kurtulus Izzetoglu, PhD (Drexel University) Associate Research Professor. Cognitive neuroengineering, functional brain imaging, near infrared spectroscopy, medical sensor development, biomedical signal processing, human performance assessment, and cognitive aging
Meltem Izzetoglu, PhD (Drexel University). Associate Research Professor. Cognitive neuroengineering, biomedical signal processing, statistical signal analysis, optimal artifact removal, information processing, optical brain imaging, functional near infrared spectroscopy, working memory, attention, learning, reading and mathematical disabilities, cognitive aging, anesthesia awareness, and social anxiety disorders.
Dov Jaron, PhD (University of Pennsylvania) Calhoun Distinguished Professor of Engineering in Medicine. Professor. Mathematical, computer and electromechanical simulations of the cardiovascular system.
Andres Kriete, PhD (University in Bremen Germany) Associate Director for Graduate Studies and Academic Operations. Systems biology, bioimaging, control theory, biology of aging, skin cancer.
Steven Kurtz, PhD (Cornell University). Associate Research Professor. Computational biomechanics of bone-implant systems and impact-related injuries, orthopaedic biomechanics, contact mechanics, orthopaedic biomaterials, large-deformation mechanical behavior and wear of polymers, and degradation and crosslinking of polyolefins in implant applications.
Ryszard Lec, PhD (University of Warsaw Engineering College). Professor. Biomedical applications of visoelastic, acoustoptic and ultrasonic properties of liquid and solid media.
Peter Lewin, PhD (University of Denmark, Copenhagen-Lyngby) Richard B. Beard Professor, School Of Biomedical Engineering, Science & Health Systems. Professor. Biomedical ultrasonics, piezoelectric and polymer transducers and hydrophones; shock wave sensors.
Hualou Liang, PhD (Chinese Academy of Sciences). Professor. Neuroengineering, neuroinformatics, cognitive and computational neuroscience, neural data analysis and computational modeling, biomedical signal processing.
Donald L. McEachron, PhD (University of California at San Diego) Coordinator, Academic Assessment and Improvement. Teaching Professor. Animal behavior, autoradiography, biological rhythms, cerebral metabolism, evolutionary theory, image processing, neuroendocrinology.
Karen Moxon, PhD (University of Colorado) Associate Director for Research. Professor. Cortico-thalamic interactions; neurobiological perspectives on design of humanoid robots.
Michael Neidrauer, PhD (Drexel University). Assistant Research Professor. Wound healing, near infrared, spectroscopy, cell culture, data analysis, optical coherence tomography (OCT), matlab, life sciences assay development, confocal microscopy, biomaterials, in-vivo, medical devices
Banu Onaral, PhD (University of Pennsylvania) H.H. Sun Professor; Senior Advisor to the President, Global Partnerships. Professor. Biomedical signal processing; complexity and scaling in biomedical signals and systems.
Kambiz Pourrezaei, PhD (Rensselaer Polytechnic University). Professor. Thin film technology; nanotechnology; near infrared imaging; power electronics.
Ahmet Sacan, PhD (Middle East Technical University). Assistant Professor. Indexing and data mining in biological databases; protein sequence and structure; similarity search; protein structure modeling; protein-protein interaction; automated cell tracking.
Joseph J. Sarver, PhD (Drexel University). Associate Professor. Neuromuscular adaptation to changes in the myo-mechanical environment.
Rahamim Seliktar, PhD (University of Strathclyde, Glasgow) Vice Director, School of Biomedical Engineering, Science & Health Systems. Professor. Limb prostheses, biomechanics of human motion, orthopedic biomechanics.
Patricia A. Shewokis, PhD (University of Georgia). Professor. Roles of cognition and motor function during motor skill learning; role of information feedback frequency on the memory of motor skills, noninvasive neural imaging techniques of functional near infrared spectroscopy(fNIR) and electroencephalograpy (EEG) and methodology and research design.
Adrian C. Shieh, PhD (Rice University). Assistant Professor. Contribution of mechanical forces to tumor invasion and metastasis, with a particular emphasis on how biomechanical signals may drive the invasive switch, and how the biomechanical microenvironment interacts with cytokine signaling and the extracellular matrix to influence tumor and stromal cell behavior.
Wan Y. Shih, PhD (Ohio State University). Associate Professor. Piezoelectric microcantilever biosensors development, piezoelectric finger development, quantum dots development, tissue elasticity imaging, piezoelectric microcantilever force probes.
Kara Spiller, PhD (Drexel University). Assistant Professor. Macrophage-biometerial interactions, drug delivery systems, and chronic would healing. Cell-biomaterial interactions, biomaterial design, and international engineering education.
Marek Swoboda, PhD (Drexel University). Assistant Teaching Professor. Cardiovascular engineering, cardiovascular system, diagnostic devices in cardiology, piezoelectric biosensors, and pathogen detection.
Amy Throckmorton, PhD (University of Virginia). Associate Professor. Computational and experimental fluid dynamics; cardiovascular modeling, including transient, fluid-structure interaction, and patient-specific anatomical studies; bench-to-bedside development of medical devices; artificial organs research; prediction and quantification of blood trauma and thrombosis in medical devices; design of therapeutic alternatives for patients with dysfunctional single ventricle physiology; human factors engineering of mechanical circulatory assist devices
Margaret Wheatley, PhD (University of Toronto) John M. Reid Professor. Ultrasound contrast agent development (tumor targeting and triggered drug delivery), controlled release technology (bioactive compounds), microencapsulated allografts (<em>ex vivo </em> gene therapy) for spinal cord repair.
Ming Xiao, PhD (Baylor University). Associate Professor. Nanotechnology, single molecule detection, single molecule fluorescent imaging, genomics, genetics, genome mapping, DNA sequencing, DNA biochemistry, and biophysics.
Yinghui Zhong, PhD (Georgia Institute of Technology). Assistant Professor. Spinal cord repair, and engineering neural prosthesis/brain interface using biomaterials, drug delivery, and stem cell therapy.
Leonid Zubkov, PhD, DSc (St. Petersburg State University, Russia). Research Professor. Physiology, wound healing, physiologic neovascularization, near-infrared spectroscopy, optical tomography, histological techniques, computer-assisted diagnosis, infrared spectrophotometry, physiologic monitoring, experimental diabetes mellitus, penetrating wounds, diabetes complications, skin, animal models, radiation scattering, failure analysis
Catherin von Reyn, PhD (University of Pennsylvania). Assistant Professor. Cell type-specific genetic engineering, whole-cell patch clamp in behaving animals, modeling, and detailed behavioral analysis to identify and characterize sensorimotor circuits.

Emeritus Faculty

Hun H. Sun, PhD (Cornell University). Professor Emeritus. Biological control systems, physiological modeling, systems analysis.
  • Schedule of Classes
  • All Course Descriptions
  • Co-op
  • Academic Advising
  • Admissions
  • Tuition & Fees