Computer Engineering BSCE / Computer Engineering MSCE

Major: Computer Engineering
Degree Awarded: Bachelor of Science in Computer Engineering (BSCE) and Master of Science in Computer Engineering
Calendar Type: Quarter
Minimum Required Credits: 227.5
Co-op Options: Three Co-ops (Five years)
Classification of Instructional Programs (CIP) code: 14.0901
Standard Occupational Classification (SOC) code: 15-1132; 15-1133; 15-1143; 17-2031

About the Program

The BS/MS in Computer Engineering is an accelerated degree program that provides academically qualified students the opportunity to develop technical depth and breadth in their major and an additional complementary related area, earning two diplomas (BS and MS) within the typical duration of earning the bachelor's degree alone. A natural progression from the student’s undergraduate courses, with the necessary technical prerequisite understanding and skills, prepares students for graduate-level studies. Students can still enjoy the benefits and rewards of the Drexel co-op experience and gaining research experience by working with research faculty. Salaries for students with MS degrees can be about 25% higher than those with BS degrees. 

For more information, visit the BS/MS webpage or for more information about these programs visit the ECE Department webpage.

Admission Requirements

Students must have a GPA of at least 3.30 and have taken 300/400-level coursework sufficient to demonstrate a readiness to take graduate coursework. Students are encouraged to review ECE course foundations to identify specific undergraduate courses needed to take the corresponding graduate course. 

Degree Requirements

General Education/Liberal Studies Requirements
CIVC 101Introduction to Civic Engagement1.0
COOP 101Career Management and Professional Development *1.0
ENGL 101Composition and Rhetoric I: Inquiry and Exploratory Research3.0
or ENGL 111 English Composition I
ENGL 102Composition and Rhetoric II: Advanced Research and Evidence-Based Writing3.0
or ENGL 112 English Composition II
ENGL 103Composition and Rhetoric III: Themes and Genres3.0
or ENGL 113 English Composition III
PHIL 315Engineering Ethics3.0
UNIV E101The Drexel Experience1.0
Communications Elective3.0
Techniques of Speaking
Technical Communication
General Education Requirements **15.0
Foundation Requirements
CHEM 101General Chemistry I3.5
CS 260Data Structures4.0
CS 265Advanced Programming Tools and Techniques3.0
ENGR 111Introduction to Engineering Design & Data Analysis3.0
ENGR 113First-Year Engineering Design3.0
ENGR 131Introductory Programming for Engineers3.0
or ENGR 132 Programming for Engineers
ENGR 231Linear Engineering Systems3.0-4.0
or ECE 231 Linear Algebra and Matrix Computations
or CAEE 231 Linear Engineering Systems
or MATH 201 Linear Algebra
ENGR 232Dynamic Engineering Systems3.0-4.0
or ECE 232 Solving Dynamic Systems
or CAEE 232 Dynamic Engineering Systems
or MATH 210 Differential Equations
MATH 121Calculus I4.0
MATH 122Calculus II4.0
MATH 200Multivariate Calculus4.0
MATH 221Discrete Mathematics3.0
MATH 291Complex and Vector Analysis for Engineers4.0
PHYS 101Fundamentals of Physics I4.0
PHYS 102Fundamentals of Physics II4.0
PHYS 201Fundamentals of Physics III4.0
Science Elective3.0
Any BIO, CHEM or PHYS course
Professional Requirements
ECE 101Electrical and Computer Engineering in the Real World1.0
ECE 105Programming for Engineers II3.0
ECE 200Digital Logic Design4.0
ECE 201Foundations of Electric Circuits I4.0
ECE 301Foundations of Electric Circuits II4.0
ECE 303ECE Laboratory3.0
ECE 350Introduction to Computer Organization3.0
ECE 361Probability and Data Analytics for Engineers4.0
ECEC 201Advanced Programming for Engineers3.0
ECEC 204Design with Microcontrollers3.0
ECES 301Signals and Systems I4.0
Senior Design ***
ECE 491 [WI] Senior Design Project I3.0
ECE 492 [WI] Senior Design Project II3.0
ECE 493 [WI] Senior Design Project III3.0
CE Core Elective (choose one of the following):3.0
Electronic Devices
Foundations of Electromagnetics for Computing & Wireless Systems
Fundamentals of Power and Energy
ECE Electives 6.0
ECE 400-level Electives ††9.0
Free Electives27.0
Master's Degree Courses
ECEC 500+ Courses21.0
General ECE Courses 9.0
Graduate Electives ‡‡15.0
Total Credits227.5-229.5
*

Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major. 

COOP 101 registration is determined by the co-op cycle assined and may be scheduled in a different term. Select students may be eligible to take COOP 001 in place of COOP 101.

**

General Education Requirements

***

Students who choose the Master's Thesis instead of Senior Design must replace ECE 491 [WI] , ECE 492 [WI] , ECE 493 [WI] credits with ECE elective credits.

2 classes or at least 6.0 credits at the 300-400 level from subject codes ECE, ECEC, ECEE, ECEL, ECEP, or ECES. Includes Special Topics in each code (T380, T480).

††

3 classes or at least 9.0 credits at the 400 level from subject codes ECE or ECEC. Includes Special Topics in each code (T480).

9.0 credits at the 500+ level from subject codes ECEC, ECEE, ECEP, ECES, ECET, ECE.

‡‡

500+ courses in the following areas: AE, BIO, BMES, CHE, CHEM, CIVE, CMGT, CS, ECE, ECEC, ECEE, ECEP, ECES, ECET, EGMT, ENGR, ENVE, ET, MATE, MATH, MEM, OPR, PHYS, PROJ, SYSE.

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid “clustering” these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List at the University Writing Program. Students scheduling their courses can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study

5 year, 3 coop Co-Terminal

First Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
CHEM 1013.5CIVC 101 or COOP 101*1.0COOP 101 or CIVC 101*1.0VACATION
ECE 1011.0ECE 2004.0ECE 1053.0 
ENGL 101 or 1113.0ENGR 131 or 1323.0ENGL 102 or 1123.0 
ENGR 1113.0MATH 1224.0ENGR 1133.0 
MATH 1214.0PHYS 1014.0MATH 2004.0 
UNIV E1011.0 PHYS 1024.0 
 15.5 16 18 0
Second Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
ECE 2014.0COM 230 or 3103.0COOP EXPERIENCECOOP EXPERIENCE
ECEC 2013.0CS 2653.0  
ENGL 103 or 1133.0ECEC 2043.0  
ENGR 231, ECE 231, CAEE 231, or MATH 2013.0-4.0ENGR 232, ECE 232, CAEE 232, or MATH 2103.0-4.0  
MATH 2213.0PHYS 2014.0  
(UG) Free Elective3.0(UG) Free Elective3.0  
 19-20 19-20 0 0
Third Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
ECE 3014.0CS 2604.0COOP EXPERIENCECOOP EXPERIENCE
ECE 3503.0ECE 3614.0(GR) Graduate Elective§3.0 
ECES 3014.0PHIL 3153.0  
(UG) General Education Elective**3.0(UG) CE Core Elective***3.0  
(UG) Free Elective3.0(UG) Science Elective3.0  
(GR) Graduate Elective§3.0
Any course in BIO, CHEM or PHYS
  
 (GR) Graduate Elective§3.0  
 20 20 3 0
Fourth Year
FallCreditsWinterCreditsSpringCreditsSummerCredits
ECE 3033.0(UG) ECE Elective3.0COOP EXPERIENCECOOP EXPERIENCE
MATH 2914.0(UG) Free Electives6.0(GR) Graduate Elective§3.0(GR) Graduate Elective§3.0
(UG) ECE Elective3.0(UG) General Education Elective**3.0  
(UG) Free Elective3.0(GR) Graduate ECEC Courses6.0  
(GR) Graduate ECEC Courses6.0   
 19 18 3 3
Fifth Year
FallCreditsWinterCreditsSpringCredits 
ECE 4913.0ECE 4923.0ECE 4933.0 
(UG) ECE 400+ Elective††3.0(UG) ECE 400+ Elective††3.0(UG) ECE 400+ Elective††3.0 
(UG) Free Elective3.0(UG) Free Elective3.0(UG) Free Elective3.0 
(UG) General Education Elective**3.0(UG) General Education Elective**3.0(UG) General Education Elective**3.0 
(GR) Graduate ECEC Courses6.0(GR) Graduate ECEC Course3.0(GR) General ECE Courses6.0 
 (GR) General ECE Course3.0  
 18 18 18 
Total Credits 227.5-229.5
*

Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major. 

**

General Education Requirements

***

Choose one of the following: ECE 370ECE 371, or ECE 380

ECE Electives: 2 classes or at least 6.0 credits at the 300-400 level from subject codes ECE, ECEC, ECEE, ECEL, ECEP, or ECES. Includes Special Topics in each code (T380, T480).

††

ECE 400+ Electives: 3 classes or at least 9.0 credits at the 400 level from subject codes ECE or ECEC. Includes Special Topics in each code (T480).

9.0 credits at the 500+ level from subject codes ECEC, ECEE, ECEP, ECES, ECET, ECE.

§

Graduate Electives: 500+ courses in the following areas: AE, BIO, BMES, CHE, CHEM, CIVE, CMGT, CS, ECE, ECEC, ECEE, ECEP, ECET, EGMT, ENGR, ENVE, ET, MATE, MATH, MEM, OPR, PHYS, PROJ, SYSE

Computer Engineering Faculty

Tom Chmielewski, PhD (Drexel University). Teaching Professor. Modeling and simulation of electro-mechanical systems; optimal, adaptive and non-linear control; DC motor control; system identification; kalman filters (smoothing algorithms, tracking); image processing; robot design; biometric technology and design of embedded systems for control applications utilizing MATLAB and SIMULINK
Fernand Cohen, PhD (Brown University). Professor. Surface modeling; tissue characterization and modeling; face modeling; recognition and tracking.
Andrew Cohen, PhD (Rensselaer Polytechnic Institute). Associate Professor. Image processing; multi-target tracking; statistical pattern recognition and machine learning; algorithmic information theory; 5-D visualization
Kapil Dandekar, PhD (University of Texas-Austin) Director of the Drexel Wireless Systems Laboratory (DWSL); Associate Dean of Research, College of Engineering. Professor. Cellular/mobile communications and wireless LAN; smart antenna/MIMO for wireless communications; applied computational electromagnetics; microwave antenna and receiver development; free space optical communication; ultrasonic communication; sensor networks for homeland security; ultrawideband communication.
Afshin Daryoush, ScD (Drexel University). Professor. Digital and microwave photonics; nonlinear microwave circuits; RFIC; medical imaging.
Anup Das, PhD (Universit of Singapore). Assistant Professor. Design of algorithms for neuromorphic computing, particularly using spiking neural networks, dataflow-based design of neuromorphic computing system, design of scalable computing system; hardware-software co-design and management, and thermal and power management of many-core embedded systems
Bruce A. Eisenstein, PhD (University of Pennsylvania). Arthur J. Rowland Professor of Electrical and Computer Engineering. Pattern recognition; estimation; decision theory.
Adam K. Fontecchio, PhD (Brown University) Director, Center for the Advancement of STEM Teaching and Learning Excellence (CASTLE). Professor. Electro-optics; remote sensing; active optical elements; liquid crystal devices.
Gary Friedman, PhD (University of Maryland-College Park) Associate Department Head for Graduate Affairs. Professor. Biological and biomedical applications of nanoscale magnetic systems.
Allon Guez, PhD (University of Florida). Professor. Intelligent control systems; robotics, biomedical, automation and manufacturing; business systems engineering.
Peter R. Herczfeld, PhD (University of Minnesota). Professor. Lightwave technology; microwaves; millimeter waves; fiberoptic and integrated optic devices.
Leonid Hrebien, PhD (Drexel University). Professor. Tissue excitability; acceleration effects on physiology; bioinformatics.
Nagarajan Kandasamy, PhD (University of Michigan) Associate Department Head for Undergraduate Affairs. Associate Professor. Embedded systems, self-managing systems, reliable and fault-tolerant computing, distributed systems, computer architecture, and testing and verification of digital systems.
Youngmoo Kim, PhD (MIT) Director, Expressive and Creative Interactive Technologies (ExCITe) Center. Professor. Audio and music signal processing, voice analysis and synthesis, music information retrieval, machine learning.
Fei Lu, PhD (University of Michigan). Assistant Professor. Power electronics; wireless power transfer technology for the high-power electric vehicles and the low-power electronic devices.
Karen Miu, PhD (Cornell University). Professor. Power systems; distribution networks; distribution automation; optimization; system analysis.
Bahram Nabet, PhD (University of Washington). Professor. Optoelectronics; fabrication and modeling; fiber optic devices; nanoelectronics; nanowires.
Prawat Nagvajara, PhD (Boston University). Associate Professor. System on a chip; embedded systems; power grid computation; testing of computer hardware; fault-tolerant computing; VLSI systems; error control coding.
Dagmar Niebur, PhD (Swiss Federal Institute of Technology). Associate Professor. Intelligent systems; dynamical systems; power system monitoring and control.
Christopher Peters, PhD (University of Michigan). Teaching Professor. Nuclear reactor design; ionizing radiation detection; nuclear forensics; power plant reliability and risk analysis; naval/marine power and propulsion; directed energy/high power microwaves; nonstationary signal processing; radar; electronic survivability/susceptibility to harsh environments; electronic warfare
Karkal Prabhu, PhD (Harvard University). Teaching Professor. Computer engineering education; computer architecture; embedded systems
Gail L. Rosen, PhD (Georgia Institute of Technology). Associate Professor. Signal processing, signal processing for biological analysis and modeling, bio-inspired designs, source localization and tracking.
Ioannis Savidis, PhD (University of Rochester). Associate Professor. Analysis, modeling, and design methodologies for high performance digital and mixed-signal integrated circuits; Emerging integrated circuit technologies; Electrical and thermal modeling and characterization, signal and power integrity, and power and clock delivery for 3-D IC technologies
Kevin J. Scoles, PhD (Dartmouth College) Associate Dean for Undergraduate Affairs. Associate Professor. Microelectronics; electric vehicles; solar energy; biomedical electronics.
Harish Sethu, PhD (Lehigh University). Associate Professor. Protocols, architectures and algorithms in computer networks; computer security; mobile ad hoc networks; large-scale complex adaptive networks and systems.
James Shackleford, PhD (Drexel University). Associate Professor. Medical image processing, high performance computing, embedded systems, computer vision, machine learning
P. Mohana Shankar, PhD (Indian Institute of Technology) Allen Rothwarf Professor of Electrical and Computer Engineering. Professor. Wireless communications; biomedical ultrasonics; fiberoptic bio-sensors.
Matthew Stamm, PhD (University of Maryland, College Park). Associate Professor. Information Security; multimedia forensics and anti-forensics; information verification; adversarial dynamics; signal processing
Baris Taskin, PhD (University of Pittsburgh). Professor. Very large-scal integration (VLSI) systems, computer architecture, circuits and systems, electronic design automation (EDA), energy efficient computing.
John Walsh, PhD (Cornell University). Associate Professor. Bounding the region of entropic vectors and its implications for the limits of communication networks, big data distributed storage systems, and graphical model based machine learning; efficient computation and analysis of rate regions for network coding and distributed storage; code construction, polyhedral computation, hierarchy, and symmetry
Steven Weber, PhD (University of Texas-Austin) Department Head. Professor. Mathematical modeling of computer and communication networks, specifically streaming multimedia and ad hoc networks.
Jaudelice de Oliveira, PhD (Georgia Institute of Technology). Associate Professor. Software-defined networking; social and economic networks; network security; design and analysis of protocols, algorithms and architectures in computer networks, particularly solutions for the Internet of Things

Emeritus Faculty

Suryadevara Basavaiah, PhD (University of Pennsylvania). Professor Emeritus. Computer engineering; computer engineering education; custom circuit design; VLSI technology; process and silicon fabrication
Eli Fromm, PhD (Jefferson Medical College). Professor Emeritus. Engineering education; academic research policy; bioinstrumentation; physiologic systems.
Edwin L. Gerber, PhD (University of Pennsylvania). Professor Emeritus. Computerized instruments and measurements; undergraduate engineering education.