Biomedical Engineering BS / Biomedical Engineering MS

Major: Biomedical Engineering
Degree Awarded: Bachelor of Science in Biomedical Engineering (BSBE) and Master of Science in Biomedical Engineering (MSBE)
Calendar Type: Quarter
Minimum Required Credits: 227.5
Co-op Options: Three Co-ops (Five years)
Classification of Instructional Programs (CIP) code: 14.0501
Standard Occupational Classification (SOC) code: 17-2031

About the Program

The Biomedical Engineering BS/MS dual degree is an accelerated program providing the academically qualified student an opportunity to simultaneously earn both BS and MS degrees (two diplomas are awarded) in the biomedical engineering program areas of his/her/their choice in five years, the time normally required to finish a bachelor's degree alone.

The program combines the practical work experience of Drexel undergraduate cooperative education with the graduate credentials of an advanced degree. With both an undergraduate and graduate degree and practical work experience, BS/MS graduates enter the work force with specialized knowledge and training.

Additional Information

More information about the School’s accelerate dual degree program can be found at the School of Biomedical Engineering, Sciences and Health Systems' Academic Program webpage.

Natalia Broz
Associate Director for Graduate Programs
School of Biomedical Engineering, Science and Health Systems

Caryn Glaser
Director of Student Services
School of Biomedical Engineering, Science and Health Systems

Admission Requirements

In addition to meeting the University requirements, students applying into the Biomedical BS/MS program must:

  • Be an undergraduate in Biomedical Engineering in the 5 year, 3 co-op plan of study
  • Have an approved plan to study that includes master's degree in Biomedical Engineering
  • Have a minimum cumulative GPA of at least 3.4

For those interested in pursuing a MS thesis, there is an additional requirement:

  • Students must submit a research petition no later than April 1 of junior year.*

*If the petition is not submitted or accepted, the student will not be able to pursue a thesis option.

Degree Requirements

BMES 310Biomedical Statistics4.0
Introduction to Calculus - Complete one of the following options based on placement exam results: *4.0-10.0
Calculus I
Calculus and Functions I
and Calculus and Functions II
Algebra, Functions, and Trigonometry
and Calculus I
MATH 122Calculus II4.0
MATH 200Multivariate Calculus4.0
MATH 201Linear Algebra4.0
MATH 210Differential Equations4.0
BIO 122Cells and Genetics4.5
BIO 201Human Physiology I4.0
BIO 218Principles of Molecular Biology4.0
Bioscience Elective: Choose 200-level or higher BIO course3.0
Bioscience Restricted Elective (Choose 1)3.0
Human Physiology II
Principles of Cell Biology
Form, Function & Evolution of Vertebrates
Genetics I
General Studies
BMES 124Biomedical Engineering Freshman Seminar I2.0
BMES 338Biomedical Ethics and Law3.0
CIVC 101Introduction to Civic Engagement1.0
COOP 101Career Management and Professional Development **1.0
ENGL 101Composition and Rhetoric I: Inquiry and Exploratory Research3.0
or ENGL 111 English Composition I
ENGL 102Composition and Rhetoric II: Advanced Research and Evidence-Based Writing3.0
or ENGL 112 English Composition II
ENGL 103Composition and Rhetoric III: Themes and Genres3.0
or ENGL 113 English Composition III
UNIV R101The Drexel Experience1.0
General Studies Electives (Choose 5) ***15.0
Biomedical Engineering - Principles
BMES 101Introduction to BMES Design I: Defining Medical Problems2.0
BMES 102Introduction to BMES Design II: Evaluating Design Solutions2.0
BMES 241Modeling in Biomedical Design I2.0
BMES 315Experimental Design in Biomedical Research4.0
BMES 341Modeling in Biomedical Design II2.0
BMES 381Junior Design I2.0
BMES 382Junior Design II2.0
BMES 491 [WI] Senior Design Project I3.0
BMES 492Senior Design Project II2.0
BMES 493Senior Design Project III3.0
BMES 201Programming and Modeling for Biomedical Engineers I3.0
BMES 202Programming and Modeling for Biomedical Engineers ll3.0
BMES 337Introduction to Physiological Control Systems3.0
BMES 375Computational Bioengineering4.0
BMES 451Transport Phenomena in Living Systems4.0
CHEM 101General Chemistry I 3.5-7.5
or CHEM 111
CHEM 101
General Chemistry I
and General Chemistry I
CHEM 102General Chemistry II4.5
CHEM 253Thermodynamics and Kinetics3.0-4.0
or ENGR 210 Introduction to Thermodynamics
ENGR 220Fundamentals of Materials4.0
BMES 345Mechanics of Biological Systems3.0
BMES 444Biofluid Mechanics3.0
MEM 202Statics3.0
MEM 238Dynamics4.0
PHYS 101Fundamentals of Physics I *4.0-8.0
or PHYS 100
PHYS 101
Preparation for Engineering Studies
and Fundamentals of Physics I
BMES 302Laboratory II: Biomeasurements2.0
BMES 303Laboratory III: Biomedical Electronics2.0
BMES 432Biomedical Systems and Signals3.0
ECE 201Foundations of Electric Circuits I4.0
PHYS 102Fundamentals of Physics II4.0
Biomedical Engineering - Electives
Laboratories (Choose 2)4.0
Human Physiology Laboratory
Techniques in Cell Biology
Techniques in Molecular Biology
Biochemistry Laboratory
Laboratory I: Experimental Biomechanics
Laboratory IV: Ultrasound Images
Laboratory V: Musculoskeletal Anatomy for Biomedical Engineers
Brain Computer Interface Laboratory
Organic Chemistry Laboratory I
Organic Chemistry Laboratory II
Concentration Requirements and STEM Electives (22 credits total; 6 of which are satisfied by GR SEM electives)16.0
Concentration Requirements (3 required courses/concentration. See list below.)
STEM Electives (9.0-12.0 credits depending on concentration) (Graduate SEM electives satisfies 6.0 credits of UG STEM electives)
Graduate Core Courses
BMES 501Medical Sciences I3.0
BMES 502Medical Sciences II3.0
BMES 510Biomedical Statistics4.0
BMES 538Biomedical Ethics and Law3.0
BMES 550Advanced Biocomputational Languages4.0
BMES 864Seminar (Must be taken 3 times)0.0
Modeling Intensive Courses (choose 2)6.0
Biological Control Systems
Transport Phenomena in Living Systems I
Biosimulation I
Biosimulation II
Mathematical Modeling of Cellular Behavior
Biocomputational Modeling and Simulation
Neural Signals
BMES Electives (can include up to 9.0 credits of Thesis)16.0
Medical Sciences III
Cardiovascular Engineering
Entrepreneurship for Biomedical Engineering and Science
Experimental Design in Biomedical Research
Intermediate Biostatistics
Interpretation of Biomedical Data
Introduction to Biosensors
Pediatric Engineering I
Pediatric Engineering II
Chronobioengineering I
Chronobioengineering II
Design Thinking for Biomedical Engineers
Introduction to Product Design for Biomedical Engineers
Nano and Molecular Mechanics of Biological Materials
Quantitative Systems Biology
Genome Information Engineering
Structural Bioinformatics and Drug Design
Genomic and Sequencing Technologies
Biomedical Signal Processing
Medical Device Development
Biological Control Systems
Medical Imaging Systems I
Medical Imaging Systems II
Medical Imaging Systems III
Tissue Engineering I
Tissue Engineering II
Biomedical Mechanics I
Biomedical Mechanics II
Transport Phenomena in Living Systems I
Biomaterials I
Biomaterials II
Biosimulation I
Biosimulation II
Biomaterials and Tissue Engineering III
Mathematical Modeling of Cellular Behavior
Biocomputational Modeling and Simulation
Experimental Methods in Neuroengineering
Neural Signals
Principles in Neuroengineering
Neural Aspects of Posture and Locomotion I
Neural Networks
Medical Instrumentation
Medical Instrumentation II
Hospital Administration
Science, Engineering, and Medicine Electives (satisfies both UG and GR degree requirements) †††6.0
Thesis Option
Master's Thesis
Total Credits227.5-242.5

MATH and PHYS sequences are determined by the student's Calculus Placement Exam score and the completion of any summer online preparatory courses available based on that score.


Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major. 

COOP 101 registration is determined by the co-op cycle assigned and may be scheduled in a different term. Select students may be eligible to take COOP 001 in place of COOP 101.


General studies electives include all liberal arts electives plus additional subjects, such as business, which do not fall under the subject areas of science, math or engineering. See the Biomedical Engineering General Studies List for a detailed list of approved courses. An abbreviated list is shown here: DANC, MUSC, TVPR, VSST, GER, FREN, GST, PHIL, PPE, PSCI, BLAW, HRMT, INTB, MGMT, OPM, ORGB; CULA, ENTP, CRTV, EDLT, EHRD.

STEM electives include courses offered by the School of Biomedical Engineering, Science and Health Systems, as well as select science, technology, and math courses from other academic units. An abbreviated list of 200 level and higher courses is shown here: ENVS, PHYS, INFO (including INFO 101INFO 110), CS (including CS 171CS 172CS 175CS 176), HSCI (excluding HSCI 205). Please see Biomedical Engineering STEM Elective List for a detailed list of approved courses


CHEM sequence is determined by the student's Chemistry Placement Exam score and the completion of a summer online preparatory course available based on that score.


Science, engineering, and medicine (SEM) electives may include graduate-level (500 level and above) courses from appropriate disciplines and departments (for example, MATH, PHYS, CS, MATE), including Biomedical Engineering (BMES). Please see (List_SEM(BSMS)_Electives) for a complete list and consult with your graduate advisor when formulating your plan of study and choosing electives.

Up to 9.0 credits of research and thesis credits may be applied toward the MS degree requirements. The research for the thesis may include work carried out during an internship.

Concentration Requirements

Students must select one concentration and complete the listed required courses. The student also needs to take additional STEM electives, as described above. The credit total of the concentration required courses and the STEM electives must be at least 22.0 credits.

Biomaterials Concentration Required Courses
BMES 460Biomaterials I4.0
BMES 461Biomaterials II4.0
CHEM 241Organic Chemistry I *4.0
Total Credits12.0

CHEM 241 is a pre-requisite for BMES 460.

Biomechanics Concentration Required Courses
BMES 441Biomechanics I: Introduction to Biomechanics4.0
BMES 442Biomechanics II: Musculoskeletal Modeling and Human Performance4.0
MEM 201Foundations of Computer Aided Design3.0
Total Credits11.0
Biomedical Imaging Concentration Required Courses
BMES 421Biomedical Imaging Systems I: Images4.0
BMES 422Biomedical Imaging Systems II: Ultrasound4.0
PHYS 201Fundamentals of Physics III *4.0
Total Credits12.0

PHYS 201 is a pre-requisite for BMES 421.

Biomedical Informatics Concentration Required Courses
BIO 219 [WI] Techniques in Molecular Biology3.0
BMES 483Quantitative Systems Biology4.0
BMES 484Genome Information Engineering4.0
Total Credits11.0
Neuroengineering Concentration Required Courses
BIO 462Biology of Neuron Function *3.0
BMES 477Neuroengineering I: Neural Signals3.0
BMES 478Neuroengineering II: Principles of Neuroengineering3.0
Total Credits9.0

BIO 462 is a pre-requisite for BMES 477.

Tissue Engineering Concentration Required Courses
BIO 219 [WI] Techniques in Molecular Biology *3.0
BMES 471Cellular and Molecular Foundations of Tissue Engineering4.0
BMES 472Developmental and Evolutionary Foundations of Tissue Engineering4.0
Total Credits11.0

BIO 219 [WI] is a pre-requisite for BMES 471.

Writing-Intensive Course Requirements

In order to graduate, all students must pass three writing-intensive courses after their freshman year. Two writing-intensive courses must be in a student's major. The third can be in any discipline. Students are advised to take one writing-intensive class each year, beginning with the sophomore year, and to avoid “clustering” these courses near the end of their matriculation. Transfer students need to meet with an academic advisor to review the number of writing-intensive courses required to graduate.

A "WI" next to a course in this catalog may indicate that this course can fulfill a writing-intensive requirement. For the most up-to-date list of writing-intensive courses being offered, students should check the Writing Intensive Course List at the University Writing Program. Students scheduling their courses can also conduct a search for courses with the attribute "WI" to bring up a list of all writing-intensive courses available that term.

Sample Plan of Study

5 year, 3 coop

First Year
BMES 1012.0BMES 1022.0BIO 1224.5VACATION
BMES 1242.0CHEM 1024.5BMES 2013.0 
CHEM 1013.5ENGL 102 or 1123.0COOP 101*1.0 
CIVC 1011.0MATH 1224.0ENGL 103 or 1133.0 
ENGL 101 or 1113.0PHYS 1014.0MATH 2004.0 
MATH 1214.0 PHYS 1024.0 
UNIV R1011.0   
 16.5 17.5 19.5 0
Second Year
ECE 2014.0MEM 2384.0  
ENGR 2204.0BMES 2412.0  
MATH 2014.0BMES 3383.0  
MEM 2023.0MATH 2104.0  
 (UG) Bioscience Restricted Elective3.0  
 18 20 0 0
Third Year
BMES 3453.0BMES 3104.0  
BMES 3754.0BMES 3412.0  
BMES 4323.0BMES 4514.0  
CHEM 253 or ENGR 2103.0-4.0(UG) Bioscience Elective 200+ level or higher3.0  
(UG) Laboratory Elective2.0(UG) Laboratory Elective2.0  
 BMES 5383.0  
 19-20 20 0 0
Fourth Year
BMES 3812.0BMES 3373.0  
(UG) General Studies Electives6.0BMES 3822.0  
BMES 5504.0BMES 4443.0  
BMES 5104.0(UG) Concentration Requirement3.0  
 (GR) Modeling Intensive Elective3.0  
 (GR) BMES Elective4.0  
 20 20 0 0
Fifth Year
BMES 4913.0BMES 4922.0BMES 4933.0 
(UG) Concentration Requirement3.0(UG) Concentration Requirement3.0(UG) Gen Studies Elective3.0 
(UG) Gen Studies Elective3.0(UG) Gen Studies Elective3.0(GR) BMES Elective4.0 
(UG) STEM Elective3.0(UG) STEM Elective4.0(GR) Modeling Intensive Elective3.0 
BMES 5013.0BMES 5023.0(GR) SEM Elective (counts as UG STEM Elective**3.0 
(GR) BMES Elective4.0(GR) BMES Elective4.0(GR) SEM Elective (counts as UG STEM Elective**3.0 
 19 19 19 
Total Credits 227.5-228.5

Co-op cycles may vary. Students are assigned a co-op cycle (fall/winter, spring/summer, summer-only) based on their co-op program (4-year, 5-year) and major. 

COOP 101 registration is determined by the co-op cycle assigned and may be scheduled in a different term. Select students may be eligible to take COOP 001 in place of COOP 101.


GR credits shared with BSE program.

Biomedical Engineering, Science and Health Systems Faculty

Fred D. Allen, PhD (University of Pennsylvania) Associate Dean for Undergraduate Education. . Teaching Professor. Tissue engineering, cell engineering, orthopedics, bone remodeling, wound healing, mechanotransduction, signal transduction, adhesion, migration.
Hasan Ayaz, PhD (Drexel University) School of Biomedical Engineering, Science and Health Systems. Associate Professor. Neuroergonomics for Brain Health and Performance, Functional Neuroimaging, Biomedical Signal Processing, Biomedical Optics, Cognitive Neuroengineering, Brain Computer Interfaces, Neurotechnology, Clinical Neuroergonomics, Systems and Applied Neuroscience, Functional Near Infrared spectroscopy (fNIRS), Electroencephalogram (EEG), Brain Computer Interfaces (BCI), Mobile Brain/Body Imaging (MoBI)
Sriram Balasubramanian, PhD (Wayne State University). Assistant Professor. Structural characteristics of the pediatric thoracic cage using CT scans and developing an age-equivalent animal model for pediatric long bones.
Kenneth A. Barbee, PhD (University of Pennsylvania) Senior Associate Dean, Associate Dean for Research. Professor. Cellular biomechanics of neural and vascular injury, mechanotransduction in the cardiovascular system, mechanical control of growth and development for wound healing and tissue engineering.
Paul Brandt-Rauf, MD, DrPH (Columbia University) Dean. Distinguished University Professor. Environmental health, particularly the molecular biology and molecular epidemiology of environmental carcinogenesis, and protein engineering for the development of novel peptide therapies for the treatment and prevention of cancer.
Donald Buerk, PhD (Northwestern University). Research Professor. Biotechnology, physiology, systems biology, blood flow, microcirculation, nitric oxide, oxygen transport
Jaimie Dougherty, PhD (Drexel University). Associate Teaching Professor. Brain-computer interface, neural encoding, electrophysiological signal acquisition and processing.
Lin Han, PhD (Massachusetts Institute of Technology). Associate Professor. Nanoscale structure-property relationships of biological materials, genetic and molecular origins soft joint tissue diseases, biomaterials under extreme conditions, coupling between stimulus-responsiveness and geometry.
Kurtulus Izzetoglu, PhD (Drexel University). Associate Professor. Biomedical optics, biomedical signal processing, medical sensor design, functional brain imaging, cognitive neuro engineering, cognitive performance, anesthesia monitoring, brain injury models and assessment.
Andres Kriete, PhD (University in Bremen Germany) Associate Dean of Academic Affairs. Teaching Professor. Systems biology, bioimaging, control theory, biology of aging.
Steven Kurtz, PhD (Cornell University). Part-time Research Professor. Computational biomechanics of bone-implant systems and impact-related injuries, orthopaedic biomechanics, contact mechanics, orthopaedic biomaterials, large-deformation mechanical behavior and wear of polymers, and degradation and crosslinking of polyolefins in implant applications.
Peter A. Lewin, PhD (University of Denmark, Copenhagen-Lyngby) Richard B. Beard Professor. Distinguished University Professor. Biomedical ultrasonics, piezoelectric and polymer transducers and hydrophones; shock wave sensors., power ultrasonics, ultrasonic metrology, tissue characterization using nonlinear acoustics, biological effects of ultrasound (chronic wound healing and noninvasive drug delivery), applications of shock waves in medicine and image reconstruction and processing.
Hualou Liang, PhD (Chinese Academy of Sciences). Professor. Neuroengineering, neuroinformatics, cognitive and computational neuroscience, neural data analysis and computational modeling, biomedical signal processing.
Donald L. McEachron, PhD (University of California at San Diego) Coordinator, Academic Assessment and Improvement. Teaching Professor. Animal behavior, autoradiography, biological rhythms, cerebral metabolism, evolutionary theory, image processing, neuroendocrinology.
Banu Onaral, PhD (University of Pennsylvania) H.H. Sun Professor; Senior Advisor to the President, Global Partnerships. Professor. Biomedical signal processing; complexity and scaling in biomedical signals and systems.
Kambiz Pourrezaei, PhD (Rensselaer Polytechnic University). Professor. Thin film technology; nanotechnology; near infrared imaging; power electronics.
Christopher Rodell, PhD (University of Pennsylvania). Assistant Professor. Biomaterials, supramolecular chemistry, and drug delivery. Therapeutic applications including the etiology of disease, organ injury, cardiovascular engineering, immune engineering, and biomedical imaging.
Ahmet Sacan, PhD (Middle East Technical University). Associate Teaching Professor. Indexing and data mining in biological databases; protein sequence and structure; similarity search; protein structure modeling; protein-protein interaction; automated cell tracking.
Joseph J. Sarver, PhD (Drexel University). Teaching Professor. Neuromuscular adaptation to changes in the myo-mechanical environment.
Mark E. Schafer, PhD (Drexel University). Research Professor. Diagnostic, therapeutic, and surgical ultrasound.
Patricia A. Shewokis, PhD (University of Georgia). Professor. Roles of cognition and motor function during motor skill learning; role of information feedback frequency on the memory of motor skills, noninvasive neural imaging techniques of functional near infrared spectroscopy(fNIRS) and electroencephalography (EEG) and methodology and research design.
Adrian C. Shieh, PhD (Rice University). Associate Teaching Professor. Mechanobiology, mechanotransduction, tumor microenvironment, cell and tissue biomechanics.
Wan Y. Shih, PhD (Ohio State University). Professor. Piezoelectric microcantilever biosensors development, piezoelectric finger development, quantum dots development, tissue elasticity imaging, piezoelectric microcantilever force probes.
Kara Spiller, PhD (Drexel University). Professor. Macrophage-biometerial interactions, drug delivery systems, and chronic would healing. Cell-biomaterial interactions, biomaterial design, and international engineering education.
Marek Swoboda, PhD (Drexel University). Assistant Teaching Professor. Cardiovascular engineering, cardiovascular system, diagnostic devices in cardiology, piezoelectric biosensors, and pathogen detection.
Amy Throckmorton, PhD (University of Virginia). Professor. Computational and experimental fluid dynamics; cardiovascular modeling, including steady, transient, fluid-structure interaction, lumped parameter, microelectromechanical systems, and patient-specific anatomical studies; artificial organs research; and engineering.
Bhandawat Vikas, PhD (Johns Hopkins School of Medicine). Associate Professor. Sensorimotor integration, whole-cell patch clamp and imaging in behaving animals, optogenetics, neuromechanics, locomotion.
Margaret Wheatley, PhD (University of Toronto) John M. Reid Professor. Ultrasound contrast agent development (tumor targeting and triggered drug delivery), controlled release technology (bioactive compounds), microencapsulated allografts (ex vivo gene therapy) for spinal cord repair.
Ming Xiao, PhD (Baylor University). Associate Professor. Nanotechnology, single molecule detection, single molecule fluorescent imaging, genomics, genetics, genome mapping, DNA sequencing, DNA biochemistry, and biophysics.
Yinghui Zhong, PhD (Georgia Institute of Technology). Assistant Professor. Spinal cord repair, and engineering neural prosthesis/brain interface using biomaterials, drug delivery, and stem cell therapy.
Leonid Zubkov, PhD, DSc (St. Petersburg State University, Russia). Research Professor. Physiology, wound healing, physiologic neovascularization, near-infrared spectroscopy, optical tomography, histological techniques, computer-assisted diagnosis, infrared spectrophotometry, physiologic monitoring, experimental diabetes mellitus, penetrating wounds, diabetes complications, skin, animal models, radiation scattering, failure analysis
Catherin von Reyn, PhD (University of Pennsylvania). Assistant Professor. Cell type-specific genetic engineering, whole-cell patch clamp in behaving animals, modeling, and detailed behavioral analysis to identify and characterize sensorimotor circuits.

Emeritus Faculty

Dov Jaron, PhD (University of Pennsylvania) Calhoun Distinguished Professor of Engineering in Medicine. Professor Emeritus. Mathematical, computer and electromechanical simulations of the cardiovascular system.
Rahamim Seliktar, PhD (University of Strathclyde, Glasgow). Professor Emeritus. Limb prostheses, biomechanics of human motion, orthopedic biomechanics.
Hun H. Sun, PhD (Cornell University). Professor Emeritus. Biological control systems, physiological modeling, systems analysis.
  • Schedule of Classes
  • All Course Descriptions
  • Co-op
  • Academic Advising
  • Admissions
  • Tuition & Fees